Refine Your Search

Topic

Search Results

Technical Paper

Simulation Research on Electromagnetic Radiation Effects of Electric Vehicle on the Occupant Health

2016-04-05
2016-01-0135
Nowadays researches of automotive electromagnetic field mainly focus on the component level and electromagnetic compatibility, while there is a lack of relevant studies on internal electromagnetic environment of the vehicles. With the increasingly complex internal electromagnetic environment of the vehicle, people are increasingly concerned about its potential impact of human health. This article researches on a type of electric vehicle and the occupants and analyses its electromagnetic radiation effects on human health. Firstly, considering the characters of Pro/E, Hypermesh and FEKO, the “Characteristics grouping subdivision” method is used to establish the entire vehicle body FE model. According to the requirement of MOM/FEM method, the entire vehicle model is optimized to be a high quality body model with simple construction and moderate grid size.
Technical Paper

Study on the Braking Torque Allocation of the ABS Based on the Frequency of the Electro-Hydraulic Brake

2015-09-27
2015-01-2703
Study on the braking torque allocation of the ABS (Anti-lock Brake System) of the electro-hydraulic brake system in the distributed drive electric vehicles, using a hierarchical control structure, of which the lower controller takes a braking torque allocation strategy based on frequency, so as to achieve a good braking effect. The lower controller uses the strategies which are based on the filter principle or the weighted least squares algorithm. To the former, Butterworth filter is selected to execute the braking torque allocation. Then the ABS braking torque allocation strategy based on Butterworth filter and the weighted least squares are designed and analyzed respectively, finally their braking effects are simulated and contrasted in Simulink and AMESim.
Technical Paper

Optimal Regenerative Braking Control for 4WD Electric Vehicles with Decoupled Electro-Hydraulic Brake System

2015-04-14
2015-01-1117
Regenerative braking control for a four-wheel-drive (4WD) electric vehicle (EV) equipped with a decoupled electro-hydraulic brake system was studied. The energy flow of the 4WD electric vehicle was analyzed during braking, and the brake force distribution strategy between the front-rear axles, regenerative braking and hydraulic braking was studied. Considering ECE R13 regulations, motors and battery pack characteristic constraints, the optimal regenerative braking control strategy using Genetic Algorithm (GA) was proposed. A Hardware-in-loop (HIL) test was built to verify the proposed regenerative braking control strategy. The results show that the optimal regenerative braking control strategy for the 4WD electric vehicle was advantageous over the comparison program, and regenerative energy efficiency reaches 78.87% under the Shanghai Urban Driving Cycle (SUDC).
Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

Electric Vehicle Behavioral Modeling Methods for Motor Drive System EMI Design Optimization

2015-04-14
2015-01-1204
Electromagnetic interference (EMI) is a common problem in power electronics systems. Pulse-width modulation (PWM) control of semiconductor devices in a power converter circuit creates discontinuity in voltage and current with rich harmonics over a broad frequency range, creating both conducted and radiated noise. The increase in switching speed enabled by new power semiconductor devices helps to reduce converter size and reduce switching losses, but further exacerbates the EMI problem. Complying with regulatory EMI emission limits requires the use of EMI filters in almost all power converter designs, and EMI filters are often the dominant elements for system volume, weight, and cost. Electromagnetic interference (EMI) filtering is a critical driver for volume and weight for many applications, particularly in airborne and other mobile platforms.
Technical Paper

Investigation of Control Method for Starting of Linear Internal Combustion Engine-Linear Generator Integrated System

2015-04-14
2015-01-1729
The linear internal combustion engine-linear generator integrated system (LICELGIS) is a generating unit with high power density, high efficiency and low emission for the range-extended electric vehicle. The LICELGIS starts with the linear generator, which shows the advantages of speed, efficiency and emission reduction, as well as the prerequisite to guarantee the steady operation of the system. This paper focuses on the reversing control method and the energy utilization efficiency in the starting process of the LICELGIS. Pursuant to the starting requirements of the linear internal combustion engine, the fewest driving cycle and the evaluation index are obtained. Meanwhile, the velocity tracking mode and the position tracking mode is proposed for the control of the starting force reversing. The motions of the starting process under two control method are comparatively analyzed, indicating that the former has a high efficiency, while the latter is more likely to achieve.
Technical Paper

NVH Performance of Accessories in Range-Extended Electric Vehicle

2015-03-10
2015-01-0040
In course of the electrification of vehicle's powertrain, one of the vital problems we've been faced with is the limitation of the vehicle's driving range due to the capacity of currently available batteries. Therefore, range-extended electric vehicle (ReEV) concept has become one of the most promising transitory technologies to compensate this defect. Electric vehicle is supposed to be quiet and comfortable for the customers. However, some annoying sound derived from powertrain and accessories must be reduced or eliminated to meet this requirement. Accessory NVH has an important contribution to ReEV's NVH performance. If it is not well handled, poor vibration and noise may appear. This paper focuses on accessories' NVH performance in ReEV including the NVH problems from steering pump, vacuum pump and AC compressor.
Technical Paper

Subjective and Objective Evaluation of APU Start-Stop NVH for a Range-Extended Electric Vehicle

2015-03-10
2015-01-0047
In recent years, electric vehicle and hybrid vehicle are either on the market or under intensive research and development (R&D). Since the concept of auxiliary power unit (APU) was brought into the automotive industry, the range-extended electric vehicle (ReEV) has become the favor of the worldwide manufacturers. Normally, the APU starts and stops more frequently in response to the control strategy compared with traditional vehicles, which will affect the ride comfort of passengers. Thus, APU start-stop NVH refinement is an important aspect of ReEV R&D. In this paper, a subjective evaluation on a ReEV was performed to quickly diagnose NVH issues firstly. Based on subjective results, the NVH experiment in a semi-anechoic room was carried out to troubleshoot these issues. The accelerations of the APU mounts, the seat track and the steering wheel as well as interior noise level were acquired and analyzed.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

Vibration Characteristic Analysis and Optimization of the Rear Suspension of Eccentrical Motor Driven Electric Vehicle

2013-03-25
2013-01-0088
To wheel driven electric vehicle, besides road unevenness excitation, the electric motor torque fluctuation has great effects on the whole body vibration (WBV) according to prior research.[1],[2] To evaluate and further reduce the influence of torque fluctuation on the whole body vibration (WBV), vibration characteristic of rear suspension is analyzed thoroughly and finally optimized in this paper. Firstly, based on an existing eccentrical motor driven electric vehicle, a rear twist beam suspension suitable for high frequency analysis is modeled in Adams/View. Secondly, the vibration characteristic is simulated using Adams/Vibration module and verified with natural modal parameters of system. Finally, the vibration characteristic is optimized by adjusting the parameters of bushings using DOE method and proven to be effective to reduce WBV caused by torque fluctuation.
Technical Paper

Model Based Yaw Rate Estimation of Electric Vehicle with 4 in-Wheel Motors

2009-04-20
2009-01-0463
This paper describes a methodology to estimate yaw rate of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle yaw rate precisely, especially when some of the four wheels have large slip ratio. Therefore, a model based estimation methodology is put forward, which uses four wheel speeds, steering wheel angle and vehicle lateral acceleration as input signals. Firstly the yaw rate is estimated through three different ways considering both vehicle kinematics and vehicle dynamics. Vehicle kinematics based method has good estimation accuracy even when the vehicle has large lateral acceleration. However, it can not provide satisfying results when the wheel has large slip ratio. In contrast, vehicle dynamics based method is not so sensitive to wheel slip ratio.
Technical Paper

Longitudinal Velocity Estimation of Electric Vehicle with 4 In-wheel Motors

2008-04-14
2008-01-0605
This paper describes a methodology to estimate longitudinal velocity of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle longitudinal velocity precisely, especially when all of four wheels have large slip ratio. Therefore, an estimation methodology based on fuzzy logic is put forward, which uses four wheel speed and longitudinal acceleration as input signals. However, this method works not very well when two or more wheels have large slip ratio. In order to improve estimation effect, a state variable filter is designed to calculate wheel acceleration signals, which are used as additional signals to the fuzzy logic observer. Furthermore, the possibility of using four wheel driving torque signals to improve the estimation precision is also discussed.
X